Hu, Liangbing

胡良兵“焦热快烧”

Hu, Liangbing

Hu, Liangbing

Herbert Rabin Distinguished Professor
Director, Center for Materials Innovation
Finalist of Blavatnik Award for Young Scientists (2019, 2018)
Invention of the Year, UMD (2019, 2013)
R&D 100 Award (2020, 2018)
Materials Science and Engineering
Mechanical Engineering
Maryland Energy Innovation Institute
2330C Jeong H. Kim Engineering Building

https://www.hight-tech.com/

https://www.bingnano.com/

https://www.bingnano.com/publications

https://www.science.org/doi/10.1126/science.aau9101

https://mse.umd.edu/clark/faculty/669/Liangbing-Hu

https://energy.umd.edu/clark/faculty/669/Liangbing-Hu

https://nyxr-home.com/71828.html

胡良兵教授代表作包括:

1.Processing bulk natural wood into a high-performance structural material, Nature, 2018.

2.Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science, 2018. (Cover)

3.A radiative cooling structural material, Science, 2019.

4.A general method to synthesize and sinter bulk ceramics in seconds, Science, 2020. (Cover)

5.Developing fibrillated cellulose as a sustainable technological material, Nature, 2021.

6.Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material, Science, 2021. (Cover)

7.Copper-coordinated cellulose ion conductors for solid-state batteries, Nature, 2021.

8.Determining the three-dimensional atomic structure of an amorphous solid, Nature, 2021.

9.High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery, Science, 2022.

10.Programmable heating and quenching for efficient thermochemical synthesis, Nature, 2022. (Cover)

Representative Publications

For the full list, please visit

  • Dr. Hu’s Research

        ID: http://www.researcherid.com/rid/N-6660-2013

  • Dr. Hu’s Google scholar profile:

        https://scholar.google.com/citations?hl=en&user=aYbwgSMAAAAJ

1. A Radiative Cooling Structural Material.

Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; Dai, J.; Chen, C.; Aili, A.; Vellore, A.; Martini, A.; Yang, R.; Srebric, J.; Yin, X.; Hu, L.*

Science 2019, 364, 760–763. PDF

2. High Temperature Shockwave Stabilized Single Atoms.

Yao, Y.; Huang, Z.; Xie, P.; Wu, L.; Ma, L.; Li, T.; Pang, Z.; Jiang, M.; Liang, Z.; Gao, J.; He, Y.; Kline, D.; Zachariah, M.; Wang, C.; Lu, J.; Li, T.; Wang, C.; Shahbazian-Yassar, R.; Hu, L.*

Nature Nanotechnology, 2019, 14, 851-857. PDF

3. Cellulose Ionic Conductors with High Differential Thermal Voltage for Low-Grade Heat Harvesting.

Li, T.; Zhang, X.; Lacey, S. D.; Mi, R.; Zhao, X.; Jiang, F.; Song, J.; Liu, Z.; Chen, G.; Dai, J.; Yao, Y.; Das, S.; Yang, R.; Briber, Hu, L.*

Nature Materials 2019, 18, 608–613. PDF

4. A Printed, Recyclable, Ultra-Strong, and Ultra-Tough Graphite Structural Material.

Zhou, Y.; Chen, C.; Zhu, S.; Sui, C.; Wang, C.; Kuang, Y.; Ray, U.; Liu, D.; Brozena, A.; Leiste, U. H.; Quispe, N.; Guo, H.; Vellore, A.; Bruck, H. A.; Martini, A.; Foster, B.; Lou, J.; Li, T.*; Hu, L.*

Materials Today 2019, online. PDF

5. Electron/Ion Dual-Conductive Alloy Framework for High-Rate and High-Capacity Solid-State Lithium Metal Batteries.

Yang, C.; Xie, H.; Ping, W.; Fu, K.; Liu, B.; Rao, J.; Dai, J.; Wang, C.; Pastel, G.; Hu, L.*

Advanced Materials, 2018, 21:1804815. PDF

6. Carbo-Thermal Shock Synthesis of High Entropy Alloy Nanoparticles.

Yao, Y.; Huang, Z.; Xie, P.; Lacey, S.; Jacob, R.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; Yu, D.; Zachariah, M.; Wang, C.; Shahbazian-Yassar R.; Li, J.; Hu, L.*

Science, 2018, 359, 1489 (Article, COVER). PDF

7. Processing bulk natural wood into a high-performance structural material.

Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quyispe, N.; Yao, Y.; Gong, A.; Leiste, U.H.; Bruck, H.A.; Zhu, J.Y.; Vellore, A.; Martini, A.; Li, T.; Hu, L.*

Nature, 2018, 554, 224. PDF

8. High Performance Thermoelectric in 3300 K Reduced Graphene Oxide Networks with High Temperature Capability.

Li, T,; Pickel, A.; Yao, Y.; Chen, Y.; Zeng, Y.; Lacey, S.D.; Li, Y.; Wang, Y.; Dai, J.; Wang, Y.; Yang, B.; Fuhrer, M.S.; Marconnet, A.; Drew, D.H.; Hu, L.*

Nature Energy, 2018, 3, 148. PDF

9. Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries.

Han, X.; Gong, Y.; Fu, K.K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; Mo, Y., Thangadurai, V.;

Wachsman.; Hu, L.*

Nature Materials, 2017, 16, 572. PDF

10. Inverted Battery Design as Ion Generator for Interfacing with Biosystems.

Wang, C.; Fu, K.; Dai, J.; Lacey, S.; Yao, Y.; Pastel, G.; Xu, L.; Zhang, J.; Hu, L.*

Nature Communications, 2017, 8, 15609. PDF

11. Tree-Inspired Design for High-Efficiency Water Extraction.

Zhu, M.; Li, Y.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X.; Wang, Y.; Lacey, S. D.; Dai, J.; Wang, C.; Hu, L.*

Advanced Materials, 2017, 29, 1704107. PDF

12. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

Zhu, H.; Luo, W.; Ciesielski, P.; Fang, Z.; Zhu, J.; Henriksson, G.; Himmel, M.; Hu, L.*

Chemical Review, 2016, 116, 9305. PDF

13. Ultra-fast, Ultra-High Temperature, In situ Self-assembly and Stabilization of Nanoparticles in Reduced Graphene Oxide Films

Chen, Y.; Egan, G.; Wan, J.; Zhu, S.; Zhou, W.; Dai, J.; Wang, Y.; Danner, V.; Yao, Y.; Fu, K.; Wang, Y.; Li, T.; Zachariah, M.; Hu, L.*

Nature Communications, 2016, 7, 12332. PDF

14. Towards Garnet Electrolyte-based Li metal batteries: An Ultrathin, Highly Effective Artificial Solid-State Electrolyte/Metallic Li Interface.

Fu, K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S.; Dai, J.; Chen, Y.; Mo, Y.; Wachsman, E.; Hu, L.*

Science Advances, 2016, 3, e1601659. PDF

15. Anisotropic Transparent Wood-Composites. (VIP paper, the hottest paper in Advanced Materials of Year 2016, Rank #1).

Zhu, M.; Song, J.; Li, T.; Gong, A.; Wang, Y.; Dai, J.; Yao, Y.; Luo, W.; Henderson, D.; Hu, L.*

Advanced Materials, 2016, 28, 5181. PDF

16. Flexible, Solid-State Lithium Ion-conducting Membrane with 3D Garnet Nanofiber Networks.

Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, Y.; Wang, C.; Chen, Y.; Yan, C.; Li, Y.; Wachsman, E.; Hu, L.*

Proceeding of the National Academy of Sciences, 2016, 113, 26,7094. PDF

17. Approaching the Limits of Transparency and Conductivity in Graphitic Materials through Lithium Intercalation.

Bao, W.; Wan, J.; Han, X.; Cai, X.; Zhu, H.; Kim, D.; Ma, D.; Munday, J.; Drew, D.; Fuhrer, M.; Hu, L.*

Nature Communications, 2014, 5, 4224. PDF

18. Highly Transparent Paper with Tunable Haze for Green Electronics.

Fang, Z.; Zhu, H.; Bao W.; Preston, C.; Liu Z.; Dai, J.; Li Y.; Hu, L.*

Energy & Environmental Science, 2014, 7, 3313. PDF

19. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications.

Hu, L.*; Hecht, D. S.; Gruner, G.*

Chemical Reviews, 2010, 110, 5790. PDF

20. Percolation in Transparent and Conducting Carbon Nanotube Networks. (key technology for Spinoff Company, Unidym Inc)

Hu, L.; Hecht, D. S.; Gruner, G.*

Nano Letters, 2004, 4, 2513. PDF

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注