|
|
毫米波频段没有太过精确的定义,通常将30~300GHz的频域(波长为1~10毫米)的电磁波称毫米波,它位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的发展。
与光波相比,毫米波利用大气窗口(毫米波与亚毫米波在大气中传播时,由于气体分子谐振吸收所致的某些衰减为极小值的频率)传播时的衰减小,受自然光和热辐射源影响小。
优点:
1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5倍。这在频率资源紧张的今天无疑极具吸引力。
2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波束宽度仅1.8度。因此可以分辨相距更近的小目标或者更为清晰地观察目标的细节。
3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。
4)和微波相比,毫米波元器件的尺寸要小得多。因此毫米波系统更容易小型化。
缺点:
1)大气中传播衰减严重。
2)器件加工精度要求高。
优点:
1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz。超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5倍。这在频率资源紧张的今天无疑极具吸引力。
2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波束宽度仅1.8度。因此可以分辨相距更近的小目标或者更为清晰地观察目标的细节。
3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。
4)和微波相比,毫米波元器件的尺寸要小得多。因此毫米波系统更容易小型化。
缺点:
1)大气中传播衰减严重。
2)器件加工精度要求高。
近年来,随着对毫米波系统需求的增长,毫米波技术在研制发射机、接收机、天线以及毫米波器件等方面有了重大突破,毫米波雷达进入了各种应用的新阶段。
20世纪80年代以来由于对毫米波雷达需求的日益增长,从而形成了开发毫米波雷达的热潮,这取决于毫米波雷达具有以下特性:
1)频带极宽,适用于各种宽带信号处理;
2)可以在小的天线孔径下得到窄波束,方向性好,有极高的空间分辨力,跟踪精度较高;
3)有较宽的多普勒宽带,多普勒效应明显,具有良好的多普勒分辨力,测速精度较高;
4)地面杂波和多径效应影响小,低空跟踪性能好;
5)毫米波散射特性对目标形状的细节敏感,因而可提高多目标分辨对目标识别的能力与成像质量;
6)由于毫米波雷达以窄波束发射,因而使敌方在电子对抗中难以截获;
7)目前隐身飞行器等目标设计的隐身频率范围局限于1~20GHz,又因为机体等不平滑部位相对毫米波来说更加明显,这些不平滑都会产生角反射,从而增加有效反射面积,所以毫米波雷达具有一定的反隐身功能;
8)毫米波与激光和红外相比,虽然它没有后者的分辨率高,但它具有穿透烟、灰尘和雾的能力,可全天候工作。
毫米波雷达的缺点主要是受大气衰减和吸收的影响,目前作用距离大多限于10公里之内。另外,与微波雷达相比,毫米波雷达的元器件目前批量生产成品率低。再加上许多器件在毫米波频段均需涂金或者涂银,因此器件成本较高。[3]
20世纪80年代以来由于对毫米波雷达需求的日益增长,从而形成了开发毫米波雷达的热潮,这取决于毫米波雷达具有以下特性:
1)频带极宽,适用于各种宽带信号处理;
2)可以在小的天线孔径下得到窄波束,方向性好,有极高的空间分辨力,跟踪精度较高;
3)有较宽的多普勒宽带,多普勒效应明显,具有良好的多普勒分辨力,测速精度较高;
4)地面杂波和多径效应影响小,低空跟踪性能好;
5)毫米波散射特性对目标形状的细节敏感,因而可提高多目标分辨对目标识别的能力与成像质量;
6)由于毫米波雷达以窄波束发射,因而使敌方在电子对抗中难以截获;
7)目前隐身飞行器等目标设计的隐身频率范围局限于1~20GHz,又因为机体等不平滑部位相对毫米波来说更加明显,这些不平滑都会产生角反射,从而增加有效反射面积,所以毫米波雷达具有一定的反隐身功能;
8)毫米波与激光和红外相比,虽然它没有后者的分辨率高,但它具有穿透烟、灰尘和雾的能力,可全天候工作。
毫米波雷达的缺点主要是受大气衰减和吸收的影响,目前作用距离大多限于10公里之内。另外,与微波雷达相比,毫米波雷达的元器件目前批量生产成品率低。再加上许多器件在毫米波频段均需涂金或者涂银,因此器件成本较高。[3]
1)喇叭天线
角锥形喇叭一般的开口波导可以辐射电磁波,但由于口径较小,辐射效率和增益较低。如果将金属波导开口逐渐扩大、延伸,就形成了喇叭天线。喇叭天线因其结构简单、频带较宽、易于制造和方便调整等特点,而被广泛应用于微波和毫米波段。在毫米波治疗仪中也普遍采用。
2)微带天线
微带天线或印刷天线在最早是在厘米波段得到广泛应用,随后扩展到毫米波段。这类扩展并不是按波长成比例的缩尺,不是完全的仿效,而是有着新的概念和新发展。
但是毫米波微带天线有两个关键问题,一是传输线的损耗变大,二是尺寸公差变得很严格。
3)漏波天线
这类天线是电磁波沿着开放式结构传输时由于一些不连续结构而辐射能量的,所以叫漏波天线。
角锥形喇叭一般的开口波导可以辐射电磁波,但由于口径较小,辐射效率和增益较低。如果将金属波导开口逐渐扩大、延伸,就形成了喇叭天线。喇叭天线因其结构简单、频带较宽、易于制造和方便调整等特点,而被广泛应用于微波和毫米波段。在毫米波治疗仪中也普遍采用。
2)微带天线
微带天线或印刷天线在最早是在厘米波段得到广泛应用,随后扩展到毫米波段。这类扩展并不是按波长成比例的缩尺,不是完全的仿效,而是有着新的概念和新发展。
但是毫米波微带天线有两个关键问题,一是传输线的损耗变大,二是尺寸公差变得很严格。
3)漏波天线
这类天线是电磁波沿着开放式结构传输时由于一些不连续结构而辐射能量的,所以叫漏波天线。
毫米波,我们应该知道的事情
毫米波——概念
是存在于宇宙中波长为10-1毫米之间,相应频率范围30GHz-300GHz的“极高频电磁波”。它位于微波与远红外相交叠波长范围。因而,兼有两种波的特点。毫米波处于微波的最高端,具有独特的物理特点与生物体,相互作用时能产生特殊的生物学效应。
毫米波——作用原理
毫米波疗法
毫米波——发展历史
极佳毫米波技术